As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy.At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes.On the other hand, the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.If a material that selectively rejects the daughter nuclide is heated, any daughter nuclides that have been accumulated over time will be lost through diffusion, setting the isotopic "clock" to zero.Among the best-known techniques are radiocarbon dating, potassium–argon dating and uranium–lead dating.By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change.For instance, carbon-14 has a half-life of 5,730 years.After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating can not be established.
In many cases, the daughter nuclide itself is radioactive, resulting in a decay chain, eventually ending with the formation of a stable (nonradioactive) daughter nuclide; each step in such a chain is characterized by a distinct half-life.The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.This normally involves isotope-ratio mass spectrometry. The precision of a dating method depends in part on the half-life of the radioactive isotope involved.All ordinary matter is made up of combinations of chemical elements, each with its own atomic number, indicating the number of protons in the atomic nucleus.Additionally, elements may exist in different isotopes, with each isotope of an element differing in the number of neutrons in the nucleus.